LiStereo: Generate Dense Depth Maps from LIDAR and Stereo Imagery

Junming Zhang¹, Manikandasriram Srinivasan Ramanagopal², Ram Vasudevan³ and Matthew Johnson-Roberson⁴

I. ARCHITECTURE

A. LiStereo

The structural details of our proposed model, LiStereo, is shown in Table I. The pipeline in the model consists of following parts. Inputs: rectified stereo images and corresponding left sparse depth maps. Feature extraction: high-level features are extracted from stereo images and sparse depth maps. ResNet50 [1] structure is used. There are two branches, the color images branch and the LIDAR branch. The correlation layer computes correlation from one camera view to the other. Features from left color image are processed by transform layer to prepare for later sensor fusion. The PSP module [2] is used to extract more contextual information. Fusion: we fuse information by concatenation. Estimation: fused information is processed to do depth estimation. Output: both dense disparity maps and depth maps are generated.

In Table I, "convBlock" denotes the convolution block, where a convolution layer is followed by batch normalization and leaky ReLU activation. "ResBlock" denotes the residual block introduced by [1]. "upConvBlock" denotes the upsampling block, where a bilinear interpolation upsampling layer is followed by a convolution layer, batch normalization and leaky ReLU activation. The column of "Attributes" denotes key parameters or a short description. The column of "Channels I/O" denotes number of channels of inputs and output. The first term is for color images branch and the second term is for LIDAR branch. The column of "Scaling" denotes the scale of current layers relative to original input images. "corr_layer" is introduced by [3] and "PSP module" is introduced by [2].

B. LiMono

We introduce LiMono as a baseline model, which is created by removing right color image branch and some layers in the LiStereo. The structural details of LiMono is shown in Table II. There is no correlation layer and estimated disparity maps in LiMono.

II. MORE QUALITATIVE RESULTS

More qualitative results are shown.

¹J. Zhang is with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 USA junming@umich.edu

²M. Srinivasan Ramanagopal is with the Robotics Program, University of Michigan, Ann Arbor, MI 48109 USA srmani@umich.edu

³R. Vasudevan is with the Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 USA ramv@umich.edu

⁴M. Johnson-Roberson is with the Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109 USA mattjr@umich.edu

Layer	Attributes	Channels I/O	Scaling	Inputs				
Feature Extraction								
left_convBlock1, right_convBlock1, lidar_convBlock1	kernel size = 7 stride = 2	3/32, 1 /16	1/2	inputs stereo images sparse depth maps				
left_convBlock2, right_convBlock2, lidar_convBlock2	kernel size = 5 stride = 1	32/32, 16/16	1/2	left_convBlock1, right_convBlock1, lidar_convBlock1				
left_resBlock1_1, right_resBlock1_1,	kernel size = 3 stride = 2	32/64, 16/32	1/4	left_convBlock2, right_convBlock2, lidar_convBlock2				
left_resBlock1_2, right_resBlock1_2, lidar_resBlock1_2	kernel size = 3 stride = 1	64/64, 32/32	1/4	left_resBlock1_1, right_resBlock1_1, lidar_resBlock1_1				
left_resBlock1_3, right_resBlock1_3, lidar_resBlock1_3	kernel size = 3 stride = 1	64/64, 32/32	1/4	left_resBlock1_2, right_resBlock1_2, lidar_resBlock1_2				
left_resBlock2_1, right_resBlock2_1, lidar_resBlock2_1	kernel size = 3 stride = 2	64/128, 32/64	1/8	left_resBlock1_3, right_resBlock1_3, lidar_resBlock1_3				
left_resBlock2_2, right_resBlock2_2, lidar_resBlock2_2	kernel size = 3 stride = 1 128/128, 64/64 1/8		left_resBlock2_1, right_resBlock2_1, lidar_resBlock2_1					
left_resBlock2_3, right_resBlock2_3, lidar_resBlock2_3	kernel size = 3 stride = 1 128/128, 64/64, 1/8		left_resBlock2_2, right_resBlock2_2, lidar_resBlock2_2					
left_convBlock_pre, right_convBlock_pre, lidar_convBlock_pre	kernel size = 3 stride = 1 128/128, 64/64 1/8		left_resBlock2_3, right_resBlock2_3, lidar_resBlock2_3					
corr_layer	max displacement = 24	128 / 25	1/8	left_convBlock_pre, right_convBlock_pre				
context_layer	PSP module	128 / 128	1/8	left_convBlock_pre				
trans_layer	kernel size = 3 stride = 1	128 / 128	1/8	left_convBlock_pre				
Fusion								
concat_fusion	concatenation	128+128+64+25 / 345	1/8	corr_layer, context_layer, trans_layer, lidar_convBlock_pre				
	Estima	ation: encoder						
resBlock3_1	kernel size = 3 stride = 1	345 / 384	1/8	concat_fusion				
resBlock3_2	kernel size = 3 stride = 1	384 / 384	1/8	resBlock3_1				
resBlock3_3	kernel size = 3 stride = 1	384 / 384	1/8	resBlock3_2				
resBlock4_1	kernel size = 3 stride = 2	384 / 512	1/16	resBlock3_3				
resBlock4_2	kernel size = 3 stride = 1	512 / 512	1/16	resBlock4_1				
resBlock4_3	kernel size = 3 stride = 1	512 / 512	1/16	resBlock4_2				
	Estim	ation: decoder						
upConvBlock1	kernel size = 3 stride = 2	512 / 256	1/8	resBlock4_3				
skip_concat1	concatenation	256 + 384 / 640	1/8	upConvBlock1, resBlock33				
convBlock3	kernel size = 3 stride = 1	640 / 256	1/8	skip_concat1				
upConvBlock2	kernel size = 3 stride = 2	256 / 128	1/4	convBlock3				
skip_concat2	concatenation	128 + 64 / 192	1/4	upConvBlock2, left_resBlock1_3				
convBlock4	kernel size = 3 stride = 1	192 / 128	1/4	skip_concat2				
upConvBlock3	kernel size = 3 stride = 2	128 / 64	1/2	convBlock_4				
skip_concat3	concatenation	64 + 32 / 96	1/2	upConvBlock3, left_convBlock2				
convBlock5	kernel size = 3 stride = 1	96 / 64	1/2	skip_concat3				
upConvBlock4	kernel size = 3 stride = 2	64 / 64	1	convBlock5				
disp_convBlock	stride = 1, no BN or lrelu	64 / 193	1	upConvBlock4				
Output								
disparity	soft argmax	193 / 1	1	disp_convBlock				
depth	baseline, focal length	1/1	1	disparity				

TABLE I: Structural details in LiStereo

Layer	Attributes	Channels I/O	Scaling	Inputs				
Feature Extraction								
left_convBlock1, lidar_convBlock1	kernel size = 7 stride = 2	3/32, 1 /16	1/2	left color images sparse depth maps				
left_convBlock2, lidar_convBlock2	kernel size = 5 stride = 1	32/32, 16/16	1/2	left_convBlock1, right_convBlock1, lidar_convBlock1				
left_resBlock1_1, lidar_resBlock1_1	kernel size = 3 stride = 2	32/64, 16/32	1/4	left_convBlock2, lidar_convBlock2				
left_resBlock1_2, lidar_resBlock1_2	kernel size = 3 stride = 1	64/64, 32/32	1/4	left_resBlock1_1, lidar_resBlock1_1				
left_resBlock1_3, lidar_resBlock1_3	kernel size = 3 stride = 1	64/64, 32/32	1/4	left_resBlock1_2, lidar_resBlock1_2				
left_resBlock2_1, lidar_resBlock2_1	kernel size = 3 stride = 2	64/128, 32/64	1/8	left_resBlock1_3, lidar_resBlock1_3				
left_resBlock2_2, lidar_resBlock2_2	kernel size = 3 stride = 1	128/128, 64/64	1/8	left_resBlock2_1, lidar_resBlock2_1				
left_resBlock2_3, lidar_resBlock2_3	kernel size = 3 stride = 1	128/128, 64/64,	1/8	left_resBlock2_2, lidar_resBlock2_2				
left_convBlock_pre, lidar_convBlock_pre	kernel size = 3 stride = 1	128/128, 64/64	1/8	left_resBlock2_3, lidar_resBlock2_3				
context_layer	PSP module	128 / 128	1/8	left_convBlock_pre				
trans_laver	kernel size = 3 stride = 1	128 / 128	1/8	left_convBlock_pre				
Fusion								
concat_fusion	concatenation	128+128+64 / 320	1/8	context_layer, trans_layer, lidar_convBlock_pre				
Estimation: encoder								
resBlock3_1	kernel size = 3 stride = 1	320 / 384	1/8	concat_fusion				
resBlock3_2	kernel size = 3 stride = 1	384 / 384	1/8	resBlock3_1				
resBlock3_3	kernel size = 3 stride = 1	384 / 384	1/8	resBlock3_2				
resBlock4_1	kernel size = 3 stride = 2	384 / 512	1/16	resBlock3_3				
resBlock4_2	kernel size = 3 stride = 1	512 / 512	1/16	resBlock4_1				
resBlock4_3	kernel size = 3 stride = 1	512 / 512	1/16	resBlock4_2				
Estimation: decoder								
upConvBlock1	kernel size = 3 stride = 2	512 / 256	1/8	resBlock4_3				
skip_concat1	concatenation	256 + 384 / 640	1/8	upConvBlock1, resBlock3_3				
convBlock3	kernel size = 3 stride = 1	640 / 256	1/8	skip_concat1				
upConvBlock2	kernel size = 3 stride = 2	256 / 128	1/4	convBlock3				
skin_concat2	concatenation	128 + 64 / 192	1/4	unConvBlock2_left_resBlock1_3				
convBlock4	kernel size = 3 stride = 1	192 / 128	1/4	skip_concat2				
upConvBlock3	kernel size = 3 stride = 2	128 / 64	1/2	convBlock_4				
skin concat3	concatenation	64 + 32 / 96	1/2	unConvBlock3 left convBlock2				
convBlock5	kernel size = 3 stride = 1	96 / 64	1/2	skip_concat3				
upConvBlock4	kernel size = 3 stride = 2	64 / 64	1	convBlock5				
Output								
denth convBlock	kernel size = 3	64 / 1	1	unConvBlock/				
аериндонувноск	stride = 1 no BN or Irelu	04/1	1	ирсопувноск4				

Left input images		-	
Sparse2Dense (w/o GT)			
Error maps for Sparse2Dense (w/o GT)			
Sparse2Dense (w GT)			
Error maps for Sparse2Dense (w GT)	0		
LiStereo (w/o GT)			
Error maps for LiStereo (w/o GT)			
LiStereo (w GT)			
Error maps for LiStereo (w GT)			- Marine I
LiMono (w GT)			
Error maps for LiMono (w GT)			

Fig. 1: Qualitative results on KITTI validation set. From top to bottom: left input image, estimated dense depth map and corresponding error maps of different methods. 'w/o GT' refers to training in a self-supervised manner. 'w GT' refers to training using ground-truth depth maps. The error maps use the log-color scale, depicting correct estimates in blue and wrong estimates in red. Pixels that have no ground-truth depth are colorized in black in error images.

Fig. 2: Qualitative results on different levels of input sparsity for self-supervised model (LiStereo w/o GT) during training. The model is trained and evaluated using different levels of sparsity of input depth maps. From top to bottom: left input image, estimated dense depth maps and corresponding error maps of different input sparsity levels indicated on the left. The error maps use the log-color scale, depicting correct estimates in blue and wrong estimates in red. Pixels that have no ground-truth depth are colorized in black in error images.

Fig. 3: Qualitative results on different levels of input sparsity for supervised model (LiStereo with GT) during training. The model is trained and evaluated using different levels of sparsity of input depth maps. From top to bottom: left input image, estimated dense depth maps and corresponding error maps of different input sparsity indicated on the left. The error maps use the log-color scale, depicting correct estimates in blue and wrong estimates in red. Pixels that have no ground-truth depth are colorized in black in error images.

Fig. 4: Qualitative results on different levels of input sparsity during inference. Models are trained using original sparse depth maps but are provided different input sparsity levels during inference. From top to bottom: estimated dense depth maps and corresponding error maps of different different input sparsity indicated on the left. From left to right: results of Sparse2Dense (w/o GT), LiStereo (w/o GT), Sparse2Dense (with GT) and LiStereo (with GT). The error maps use the log-color scale, depicting correct estimates in blue and wrong estimates in red. Pixels that have no ground-truth depth are colorized in black in error images.

References

- [1] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2016, pp. 770–778.
- [2] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, "Pyramid scene parsing network," in *Proceedings of the IEEE conference on computer vision and pattern recognition*, 2017, pp. 2881–2890.
- [3] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, "A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2016, pp. 4040–4048.