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I. COMPUTATION OF THE OPTIMAL LATENT FEATURE

Here we provide a derivation of zopt, the optimal latent feature with highest probability in the latent space. The distribution
of the latent space qφ(z|x) is represented by a set of multivariate Gaussian distributions (Equation (5) in the main paper).
By assuming that votes are independent and qφ(z|xi) is Gaussian distributed, the derivation of zopt is as follows:
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where a multivariate Gaussian distribution is characterized by mean vector µi and covariance matrix Σi; n is the number
of votes; m is the dimension of the latent space. The solution to optimizing qφ(z|x) can be computed by setting derivative
to zero:
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Thanks to concavity, the maximizing argument zopt of qφ(z|x) is given by:
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For simplicity, we assume diagonal covariance matrix during experiments. Both µi and Σi are generated from each local
point set, and modeled by neural networks.

II. DETAILS OF IMPLEMENTATION

A. Training

We implement our network in PyTorch and use PyTorch Geometric Library [1]. During optimization, we use the Adam
optimizer [2] with default parameters except for the learning rate. We train models for three different tasks. (1) For point
clouds classification experiments, the learning rate starts with 0.001 and is scaled by 0.2 every 200 epochs and total 500
epochs are performed. Batch size is 64 and we split them into 2 NVIDIA Tesla V100 GPUs during training. (2) For part
segmentation experiments, the learning rate starts with 0.001 and is scaled by 0.2 every 200 epochs and total 500 epochs
are performed. Batch size is 128 and we split them into 4 NVIDIA Tesla V100 GPUs during training. (3) For point clouds
completion experiments, the learning rate starts with 0.0002 and is scaled by 0.2 every 200 epoch and total 500 epochs are
performed. Batch size is 64 and we split them into 4 NVIDIA Tesla V100 GPUs during training.
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Fig. 1: Visualization of voting strategy. The optimal latent feature inferred by a single vote is decoded into complete point
clouds using a decoding module as in the voting case. The blue point clouds shows the complete point clouds.

B. Network Architecture

We use similar notations as PointNet++ [3] to describe the network architecture of the proposed model. SA(k, r, [l0, l1..., ld])
is a set abstraction (SA) level with k local regions of ball radius r using a shared-weights PointNet structure [4], which
contains d fully connected layers li(i = 1, ..., d) and l0 is the width of inputs. FC([l0, l1], dp) represents a fully connected
layer with input width l0, output width l1, and dropout ratio dp. All layers are followed by batch normalization [5] and Leaky
ReLU [6] layers except for the last prediction layer, last layer in the vote generation, and layers within the folding-based
decoder.

Points coordinates are first transformed to a high-dimensional space by a fully connected layer. For all experiments, the
architecture in vote generation process is the same and the outputs are the stack of mean vectors and diagonal elements of
covariance matrix, since we model the vote as a multivariate Gaussian distribution:

FC([3, 64]) −→ SA(64, 0.2, [64 + 3, 64, 128, 512]) −→ FC([512 + 3, 512, 1024 ∗ 2])

For shape classification experiments, the architecture for decoding the latent feature into K category scores is as follows:

FC([1024, 512], 0.5) −→ FC([512, 256], 0.5) −→ FC([256,K])

For part segmentation experiments, the encoding feature for each point is the stack of the latent feature, transformed point
coordinates, and a one-hot vector for representing the object category. The architecture for point-wise prediction of K part
category scores is as follows:

FC([1024 + 64 + 16, 512], 0.5) −→ FC([512, 256], 0.5) −→ FC([256, 128], 0.5) −→ FC([128,K])

For point clouds completion experiments, model with 0.1 ball radius achieves the best performance. The architecture of
decoder is inspired by the folding idea proposed in [7], which folds 2D grids into 3D shapes:

FC([1024 + 2, 512, 512, 3]) −→ FC([1024 + 3, 512, 512, 3])

III. VISUALIZATION OF VOTING STRATEGY

The latent space proposed in this paper is represented by a set of independent multivariate Gaussian distributions generated
from local point sets. Combining this with the designed training strategy, each local point set is able to infer a distribution
in the latent space. We perform experiments on partial point clouds completion on the Completion3D dataset and visualize
each vote. Specifically, the optimal latent feature inferred by a single vote is decoded into complete point clouds using the
folding-based decoder as in the voting case. As it is shown in the Figure 1, local point sets located at different parts of the



No noise
Fig. 2: Results of point clouds completion obtained from the noisy partial observation. Gaussian noise with zero mean
is assumed and the standard deviation is indicated at the bottom. Top: input partial observation. Bottom: prediction (red)
overlapped with inputs (green).
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Fig. 3: Failure cases of point clouds completion on the Completion3D dataset.

object generate votes encoding complete point clouds with different shapes. In the shown example, votes at the front of the
vehicle tend to infer vehicles with sloping rears, while votes at the rear tend to infer truck-like vehicles. Moreover, compared
to votes located at the front and the rear of the vehicle, votes in the middle contain less distinct geometry information since
their decoded point clouds are blurrier.

IV. VISUALIZATION OF POINT CLOUDS COMPLETION WITH NOISY INPUTS

We visualize the results of point clouds completion with added noise in the Figure 2. Input partial point clouds are
perturbed using Gaussian noise with zero mean, and the standard deviation differs in experiments as they are indicated
at bottom of the figure. It shows that the proposed model tends to maintain input partial shapes and lack the ability to
distinguish noise points.

V. FAILURE CASES ON POINT CLOUDS COMPLETION

We show failure cases of point clouds completion on Completion3D in the Figure 3. Given partial observation with no
distinct geometric information, all models fail to generate correct complete point clouds. However, the method developed in
this paper is able to generate sharp and reasonable completion, while outputs of other approaches are blurry. We suspect the



reason is that other approaches will generate a mean shape of what they have trained on when difficult partial point clouds
are observed. However, the proposed model predicts reasonable complete shapes.
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